Saturday, 29 July 2017

Hall sensor array quick post

Just a quick post in response to a couple of questions we've been getting for a schematic for a hall sensor array, being driven directly off the Arduino i/o pins.


If you place your A3144 hall sensors in a grid pattern, with the "flat" part of the sensor facing down (with the slightly bevelled face pointing upwards) then all of the centre pins should be connected together (a common ground).

Each of the left-hand pins should be connected horizontally to the sensors immediately left/right of them. Each of the right hand pins should be connected vertically to the sensors immediately above/below them.

The left-hand pins are the power supply for the sensors.
The right hand pins are the open-drain collectors (outputs) of the sensors.

We try to put the output pins (from the sensors) on our Arduino D2-D9 pins and make them inputs with interal pullups. We try to connect the output pins to power the sensors onto the Arduino D10-D17 pins and make them outputs, because D13 usually has an LED connected to it - you can still power a hall sensor from this pin, but using D13 as an input can be problematic.

Hope this clears a few questions up!

Friday, 23 June 2017

Back in the saddle

Well it's been a funny couple of months.
Firstly all kinds of personal and family issues meant I was travelling the country and not really spending much time at home nor in the workshop bungalow.

Then along came a General Election.
I've always taken an interest in politics, and always been a firm believer in engaging with people - whatever their political persuasion - to get people discussing policies and what parties actually do, rather than the usual X-Factor style personality vote that many elections have become.

So when the UK elections threw up a hung Parliament, the conversation didn't just stop. In fact, at the time of writing, things haven't exactly been sorted out yet. The Tories have yet to confirm a deal with the DUP to keep hold of power and there could be another General Election any time soon (although its unlikely to be before the upcoming summer recess).

On top of this, work still needs to get done to pay the bills.
So there's not been much time for messing about in the bungalow, making stuff with the 3d printer or cutting stuff out with the laser cutter.

But that's all about to change.
Enough with politics. Enough with being angry.
It's time to get making stuff again!

Monday, 15 May 2017

Light up guitar demonstration

So the light-up guitar is complete and ready to try out.


The chords and scales mode works really well.
And playing blues licks (with the blues scale selected) is great fun. As many guitarists already know, when playing a 12-bar pattern, it's quite common to play a major pentatonic melody over the one (I) chord, and a minor pentatonic melody over the four (IV) and five (V) chords. This is what gives the blues its distinctive "blues-y" sound (for you music theorists, it's the clash of a minor third over a major triad with an added flat 7th that really makes the blues sound like the blues, but the principle is the same).


By just noodling around playing notes from a scale you can get a nice blues-y guitar sound; coupled with a bit of rhythm, there's a very real danger of it actually sounding melodic!


Flicking the major/minor switch makes playing/finding chord tones really easy. Root notes are always in red. Thirds are in pale blue. When in "major" mode, the fourth degree of the scale is bright purple. So find a purple note, and the major third is immediately behind it. Slide into (or hammer on to) that note and you instantly get that blues sound.

My own personal arsenal of blues licks is limited to about three licks. But even then, playing those couple of licks with the fretboard lit up makes understanding how and why they work much easier. You can actually see when you're bouncing around the major/minor third, you can see as well as hear the effect of sliding or bending to a flat seventh, you can see why a particular lick sounds good over the four chord (because it has a fourth of the scale in it) and doesn't always fit well over the five chord.

From a learning point of view, it's a real success.
From a guitar point of view.... well, not so much.

For a start, I didn't do a very good job of clamping the fingerboard absolutely flat when gluing it to the neck. In fact, there's a tiny bit of a back-bow in the neck once it's on the guitar.
Which means I've had to really jack up the bridge and put on some super-heavy gauge strings, to try to get the neck to bow "forwards" a little bit.


with the straight edge sitting on the neck, you can see a slight gap between the ruler edge and the frets on the left, furthest away from the body. Unfortunately, this means the neck has a slight back-bow at around the fifth fret, causing lower notes to "fret out" and buzz really badly.

So although the backbow can (just about) be compensated for, it's at the cost of really heavy strings (13s on the highest E). Which, as you can imagine, makes playing blues-y licks, with lots of vibrato and string bending really tricky.

There's also a dodgy earth problem that needs finding and addressing.
It's barely noticeable when using a clean-tone amp. But add in a bit of crunch (I use the overdrive switch on my amp but the same effect happens with any high-gain effect pedal with any  kind of treble boost) and suddenly you can hear the additional electronics in the guitar signal.


When using the menu, there are audible clicks in the audio signal. But the best is when the LEDs light up. The PWM signal driving the LEDs sounds like someone blowing into an open-ended piece of drainpipe. Very peculiar!

So there we have it - a working light-up guitar. Of sorts.
It lights up. It makes finding and playing scales easy.
But it's an absolute pain to actually play.

Keith will just have to hang on a little bit longer - I'm already started on a new guitar neck which I'll make sure is created flat and not bowed. And maybe we'll try moving the electronics out of the guitar body and hooking up to a separate, dedicated box of tricks, well away from the pickups and anything else that might affect the audio signal....



Monday, 8 May 2017

Thwarted at the last!

After swapping out a couple of dodgy Nokia LCDs and some last-minute rewiring (to enable a 2000mAh lipo battery to power the whole thing as well as be charged from a regular phone charger) the back of our guitar scratchplate was looking a bit of a mess (ok, Keith, your guitar scratchplate)

We went from this....

....to this!


There's a lot to cram in there.
And even after doing some extra routing on the body


and tidying up the wiring (a little bit)


it finally came to assembling everything for the final dry fit.
Sadly, it didn't quite fit!


And it's a little bit late in the day to be running the router and hacking out lumps of wood from the body. So that'll have to wait 'til the morning. In the meantime, here's a final test, to make sure that the new wiring still works properly:


Everything works well;
The phone jack acts as a data connection for both midi and bluetooth data (not demonstrated in this video) as well as a charging point. The power switch allows you to flip between mains powered (the battery charges while connected) or battery powered. The second tone control has sneakily been replaced with a rotary encoder to navigate the menu. The major/minor flip switch lets you quickly and easily change between major and minor scales, while keeping the root notes highlighted in the same colour (red). All in all, it's pretty exciting.

Just a shame there was no time to get the router out and finish it off fully!

Thursday, 4 May 2017

Unity and TextMeshPro

I guess, since Unity "bought up" TextMeshPro and made it available for free with version 5.5 of Unity back in February, I'm probably one of the last to jump on board and give it a go.

Between messing about with Arduino, guitars and hall sensors, I've been playing about with Unity a bit too. I tried getting away from the whole "create the next awesome 3d blockbuster" and am looking to create simple, mobile-friendly games that should provide 10-30 minutes playtime. A bit like the old ZX Spectrum games of yesteryear (though I shudder to think how many hours I spent trying to get Mr Head and Mr Heels to work together properly in 1986).

Anyway, a simple 2D turn-based strategy game is currently in development (although it'll probably never be anything more than a vehicle for trying out different coding techniques,so don't expect a release date any time soon) and - like most game framework prototypes - is filled with coder art, empty graphics placeholders and lots of console debug messages.

As anyone who has worked with Steve will know, it's the graphics and look-and-feel that can elevate something pretty mediocre into something amazing. And that's what happened last night, when I swapped out my simple Unity GUI Text for some TextMeshPro glyphs.

Here's an example. It's dynamic text.
At certain points in the turn-based game, your turn can be interrupted by your opponent (a classic example of this is when a player leaves a character on "overwatch" - meaning "if anything crosses your field of view, shoot at it immediately").

Whenever a player is interrupted, we wanted a nice big on-screen display to inform them of what was going on. A simple 72-point dynamic text box just didn't seem to cut it. But swap out the text object for a TextMeshPro mesh and suddenly things look a lot prettier, very quickly


Just simple stuff like putting a gradient on some text can make it look so much better than a simple flat font. And TextMeshPro lets you define up to four gradient points (to get that shiny metallic look on each letter if you like).

Also, when you scale a text object up in Unity (for example, to create a "bounce-up" effect) even TTF fonts become pixellated at larger sizes. No such problem with TextMeshPro!

It's such a massive improvement on the original UI Text, it's no wonder Unity bought it up and now offer it for free as a Unity Essential. It's a great asset and a quick and simple way of making even boring stuff look pretty onscreen!

Wednesday, 3 May 2017

Assembling the light-up guitar

Things have slowed down a little bit, as assembling the guitar has proved to be a little more difficult than designing the electronics and writing the firmware!


The first thing to  do was make a note of the existing connections - just in case anything accidentally gets snipped or un-soldered. Then we whipped the scratch plate off and set about it with a Dremel and a small routing bit to make a window for our LCD display.


That triple-layered plastic made a right mess! Copious amounts of hot glue ensures our screen shouldn't be going anywhere, any time soon.


We took out the second tone knob (the one that's almost always left fully dialled to ten) and replaced with a fixed-value resistor. After all, the tone knob on these cheap Strat copies doesn't boost any frequencies, it can only choke them. And what's a Strat if it's not got that bright, jangly sound? Why would you want to dial that down anyway? So off came the pot, to be replaced with a fixed 220k resistor. In it's place we fitted a rotary encoder.


After cutting down the shaft and putting the tone cap back on, you'd never even know it had been modified if you weren't looking closely! Also added a stereo jack socket which we'll use to connect to the power/ground/RX pins of the microcontroller to allow data to be pushed into it at a later date.


Now for a really important part - lining up the neck and bridge. On a previous build, we missed this step out; fixed the neck, drilled the holes for the bridge, installed the tremolo system and found that the bass strings were almost in the middle of the neck and the high treble strings were fretting out, as the high E string was barely on the neck!

No chance of that happening this time around - some lengths of cotton allowed us to see where the strings would end up, to ensure we got the bridge in the right position this time.


You can see where, under the scratchplate, we had to do some extra routing to create a cavity for the LCD screen and 3000mAh lipo battery. A quick test fit made sure that everything was going to fit inside the cavities when assembled.


The firmware isn't quite finished yet (need to add in a couple more fancy patterns and recreate our earlier volume meter effect) so we're not quite ready to close it up and fit the strings. But that time is coming. It's coming real soon......

Saturday, 29 April 2017

A quick thanks to Jason for the MIDI-in schematic (and opto-isolators)

If you're having trouble with your MIDI (as we were, trying to get our input working through an opto-isolator) there's only one person with the wealth of experience worth asking and that's Jason. He quickly identified that the random spare-part left-over opto-isolator we were trying to use for our MIDI-In simply wasn't up to the job.

Apparently there isn't a great range of opto-isolators to work from for handling MIDI. Most are simply used as switches. And while its' true that serial data is just flipping a switch really quickly, we need an opto-isolator that can switch on and off quickly enough to keep up with the data rate.

Jason kindly gave us a couple of 6N138 isolators and an updated schematic to work from.


The isolator neatly inverts the MIDI logic (in MIDI a zero is a high signal and a one is low) as well as holding the RX line high when idling - just how all good UART peripherals like it.

With this slight alteration we got our MIDI In working reliably - with the added bonus that we can now hook up and MIDI source, powered from anywhere; the isolator means there's no need for a common ground or similar reference. Which is just as well - to date we've tested our light-up guitar fretboard by loading MIDI files on the laptop and playing them through a usb-to-midi interface conntect to a second usb port. This means the serial port and the MIDI signal have both been generated from the same source.

But the ultimate test of our MIDI capabilities will be when we plug the guitar into a portable keyboard, press a key and see which of our frets lights up!